Skillnad mellan versioner av "Repetition: Exponentialfunktioner"
Taifun (Diskussion | bidrag) m |
Taifun (Diskussion | bidrag) m |
||
Rad 48: | Rad 48: | ||
<div class="border-divblue">Exponentialekvationer löses genom <b><span style="color:red">logaritmering</span></b><br><br>som är exponentieringens inversa operation.</div> | <div class="border-divblue">Exponentialekvationer löses genom <b><span style="color:red">logaritmering</span></b><br><br>som är exponentieringens inversa operation.</div> | ||
− | Se de kommande avsnitten: [[Repetition: 10-logaritmer|<b><span style="color:blue">10-logaritmer</span></b>]] och [[Logaritmlagarna|<b><span style="color:blue">Logaritmlagarna</span></b>]]. | + | Se de kommande avsnitten: [[Repetition: 10-logaritmer|<b><span style="color:blue">10-logaritmer</span></b>]] och [[Repetition: Logaritmlagarna|<b><span style="color:blue">Logaritmlagarna</span></b>]]. |
Till skillnad från exponentialekvationer förekommer i [[Potenser#Potensekvationer|<b><span style="color:blue">potensekvationer</span></b>]] av typ <math> \, x\,^a\, = b \, </math> obekanten <math> \, x \, </math> i basen. | Till skillnad från exponentialekvationer förekommer i [[Potenser#Potensekvationer|<b><span style="color:blue">potensekvationer</span></b>]] av typ <math> \, x\,^a\, = b \, </math> obekanten <math> \, x \, </math> i basen. |
Versionen från 21 september 2017 kl. 17.49
<< Förra avsnitt | Rep.: 10-logaritmer | Genomgång Talet e & ln | Övningar Talet e & ln | Nästa avsnitt >> |
Rep.: Exponentialfunktioner | Rep.: Logaritmlagarna | Genomgång | Övningar | Nästa avsnitt >> |
Detta är ett repeterande underavsnitt i Matte 3-kursens avsnitt Talet e och den naturliga logaritmen.
Exponentialfunktioner är sådana funktioner som har sin oberoende variabel \( \, x \, \) i exponenten.
- Om log se nästa avsnitt: 10-logaritmer.
Exponentialekvationer
Själva operationen \( a\,^x\, \) dvs att ta \( a \) upphöjt till \( x \) kallas för exponentiering och är en ny räkneoperation.
Anta att \( \, x \, \) är en okänd variabel och \( \, b\, \) och \( \, c \, \) givna konstanter \( \neq 0 \) .
Exponentialfunktioner av typ \( \, y \, = \, c \cdot a\,^{\color{Red} x} \, \) ger upphov till en ny typ av ekvationer:
I både exponentialfunktioner och -ekvationer förekommer obekanten \( \, {\color{Red} x}\, \) i exponenten.
som är exponentieringens inversa operation.
Se de kommande avsnitten: 10-logaritmer och Logaritmlagarna.
Till skillnad från exponentialekvationer förekommer i potensekvationer av typ \( \, x\,^a\, = b \, \) obekanten \( \, x \, \) i basen.
För deras lösning används en annan operation:
Internetlänkar
http://www.youtube.com/watch?v=rYHdUrKqxaU
http://goto.glocalnet.net/larsthomee/logaritm.html
http://www.kck.amal.se/webtutor/ovel/mattec/Funktioner/F3.html
http://wiki.math.se/wikis/sf0600_0701/index.php/3.3_Logaritmer
Copyright © 2011-2017 Taifun Alishenas. All Rights Reserved.