Skillnad mellan versioner av "2.6 Derivatan av exponentialfunktioner"

Från Mathonline
Hoppa till: navigering, sök
m
m
Rad 18: Rad 18:
  
 
För att kunna göra det gör vi först ett försök med derivatans definition att ställa upp en deriveringsregel för <math> y = a\,^x </math>. Försöket kommer att misslyckas, vilket kommer att leda oss till den avgörande frågeställning som kommer att lösa problemet. Denna frågeställning lyder:  
 
För att kunna göra det gör vi först ett försök med derivatans definition att ställa upp en deriveringsregel för <math> y = a\,^x </math>. Försöket kommer att misslyckas, vilket kommer att leda oss till den avgörande frågeställning som kommer att lösa problemet. Denna frågeställning lyder:  
 
 
<div class="border-div2">
 
<big>''Kan basen i den allmänna exponentialfunktionen väljas så att derivatan av <math> y = a\,^x </math> blir så enkel som möjligt, nämligen <math> y\,' = a\,^x </math>? ''</big>
 
</div>
 
  
  
Rad 32: Rad 27:
 
</div>
 
</div>
  
 
:''Kan basen i den allmänna exponentialfunktionen väljas så att derivatan av <math> y = a\,^x </math> blir så enkel som möjligt, nämligen <math> y\,' = a\,^x </math>? ''
 
  
 
Man vänder alltså på steken: Istället för att fråga efter deriveringsregeln, ger man en deriveringsregel och frågar efter en bas samt beräknar basen så att den uppfyller deriveringsregeln.  
 
Man vänder alltså på steken: Istället för att fråga efter deriveringsregeln, ger man en deriveringsregel och frågar efter en bas samt beräknar basen så att den uppfyller deriveringsregeln.  

Versionen från 23 oktober 2014 kl. 11.52

       <-- Förra avsnitt          Teori          Övningar          Nästa avsnitt -->      


Lektion 21 Derivatan av exponentialfunktioner

Derivatan av exponentialfunktionen \( y = e\,^x \)

Det kan vara bra att friska upp sina kunskaper om exponentialfunktionen med basen \( e\, \) (Eulers tal) från kapitel 1. Vi behöver nämligen i detta avsnitt att härleda derivatan av exponentialfunktionen \( y = e\,^x \) med basen \( e\, \) för att sedan kunna med hjälp av den ställa upp deriveringsregeln för den allmänna exponentialfunktionen \( y = a\,^x \) med en godtycklig bas \( a > 0\, \).

För att kunna göra det gör vi först ett försök med derivatans definition att ställa upp en deriveringsregel för \( y = a\,^x \). Försöket kommer att misslyckas, vilket kommer att leda oss till den avgörande frågeställning som kommer att lösa problemet. Denna frågeställning lyder:


Kan basen i den allmänna exponentialfunktionen väljas så att derivatan av \( y = a\,^x \) blir så enkel som möjligt, nämligen \( y\,' = a\,^x \)?


Man vänder alltså på steken: Istället för att fråga efter deriveringsregeln, ger man en deriveringsregel och frågar efter en bas samt beräknar basen så att den uppfyller deriveringsregeln.

Det kommer att visa sig att svaret på frågan oven är: Ja, denna bas kan bestämmas till Eulers tal \( e\, \).

I matematikens historia har frågeställningen motiverat den schweiziske matematikern Leonard Euler att ställa upp sin berömda formel för beräkning av talet \( e\, \). På 1700-talet bevisade han att den efterfrågade basen var just \( e\, \), varför talet kallats efter honom. Vi försöker i detta avsnitt att följa hans bevis.

Fil:ExpDeriv1 40c.jpg

Fil:ExpDeriv2 50.jpg

Fil:ExpDeriv3 50.jpg

Derivatan av den allmänna exponentialfunktionen \( y = a\,^x \)

Från att ha ställt upp deriveringsregeln för den naturliga exponentialfunktionen \( y = e\,^x \) är det bara ett enkelt steg till deriveringsregeln för den allmänna exponentialfunktionen \( y = a\,^x \) med en godtycklig bas \( a > 0\, \):


Fil:ExpDeriv4 50a.jpg


Specialfallet \( a = e\, \) och \( \ln a = \ln e = 1\, \) ger derveringsregeln \( y\,' = e^x \) för den naturliga exponentialfunktionen.

Uppdaterad tabell över deriveringsregler

I följande tabell är \( c,\,k,\,m,\,n,\,a \) konstanter, medan \( x\, \) och \( y\, \) är variabler, \( x\, \) den oberoende och \( y\, \) den beroende variabeln\[ y = f(x)\, \].

\( y\, \) \( y\,' \)
\( c\, \) \( 0\, \)
\( x\, \) \( 1\, \)
\( a\; x \) \( a\, \)
\( k\; x \, + \, m \) \( k\, \)
\( x^2\, \) \( 2\,x \)
\( a\,x^2 \) \( 2\,a\,x \)
\( x^n\, \) \( n\cdot x\,^{n-1} \)
\( a\,x\,^n \) \( n\cdot a\,x\,^{n-1} \)
\( {1 \over x} \) \( - {1 \over x^2} \)
\( \sqrt{x} \) \( {1 \over 2\, \sqrt{x}} \)
\( e\,^x \) \( e\,^x \)
\( e\,^{k\,x} \) \( k\cdot e\,^{k\,x} \)
\( c\cdot e\,^{k\,x} \) \( c\cdot k\cdot e\,^{k\,x} \)
\( a\,^x \) \( a\,^x \cdot \ln a \)
\( f(x) + g(x)\, \) \( f\,'(x) + g\,'(x) \)
\( a\cdot f(x) \) \( a\cdot f\,'(x) \)

De två sista raderna i tabellen är snarare generella satser än deriveringsregler. De gäller för alla funktioner \( f(x)\, \) och \( g(x)\, \). Av praktiska skäl tar vi upp dem ändå i samma tabell som deriveringsreglerna. Denna tabell kommer att ytterligare kompletteras i Matte 4-kursen då vi kommer att lära oss fler deriveringsregler och fler generella satser.



Copyright © 2011-2014 Taifun Alishenas. All Rights Reserved.