1.5 Övningar till Potenslagarna

Från Mathonline
Hoppa till: navigering, sök
       Teori          Övningar      


G-övningar: 1-6

Övning 1

Förenkla nedanstående uttryck så långt som möjligt bl.a. med hjälp av potenslagarna

a) \( x^4 \cdot x^{-2} / x \)


b) \( {2\,x^{-5} \over 3\,x^{-8}} \cdot (2\,x)^{-1} \)


c) \( (25\,x^2)^{1/2} \)


d) \( (x^{-2})^6 \cdot \sqrt{y} \over y^{0,5} \cdot (x^{-4})^3\, \)

Övning 2

Svara med SANT eller FALSKT på följande frågor och motivera ditt svar:

a) Gäller \( (a+b)^2 = a^2 + b^2\, \)? T.ex. stämmer det att \( (2+3)^2 = 2^2 + 3^2\, \)?


b) Gäller \( (a-b)^2 = a^2 - b^2\, \)? T.ex. stämmer det att \( (5-4)^2 = 5^2 - 4^2\, \)?


c) Gäller \( \sqrt{a^2+b^2} = a + b \)? T.ex. stämmer det att \( \sqrt{25+16} = 5 + 4 \)?


d) Gäller \( \sqrt{a^2 \cdot b^2} = a \cdot b \)? T.ex. stämmer det att \( \sqrt{9 \cdot 4} = 3 \cdot 2 \)?


d) Gäller \( \sqrt{a + b} = \sqrt{a} + \sqrt{b} \)? T.ex. stämmer det att \( \sqrt{4 + 36} = 2 + 6 \)?


f) Gäller \( x^3 \cdot y^2 = (x \cdot y)^5 \)? T.ex. stämmer det att \( 2^3 \cdot 5^2 = (2 \cdot 5)^5 \)?

Övning 3

Förenkla uttrycken nedan till en enda potens:

a) \( 8^2 \cdot 4^3 \)


b) \( 3^{-2} \cdot 9^2 \over 27 \)


c) \( x^{-5} \cdot x^9 \over (x^{-9})^{1/3} \)

Övning 4

Förenkla följande uttryck så långt som möjligt:

a) \( 625\;^{-{2 \over 3}}\, \)


b) \( \sqrt{{4^{40} \over 4} \; / \; 4^{38}} \)


c) \( {9\,^{z+1} \cdot 81\,^{3\,z/4} \over 27\,^{5\,z/3}} \). (Tips: Skriv om alla baser till en enda bas.)


d) \( (6^x + 6^x + 6^x)^2 \; / \; 9\)


VG-övningar: 5-6

Övning 5

Lös följande ekvationer:

a) \( (3^x + 3^{x+1}) \,/\, 4\; = \; 9 \)


b) \( (2^x + 2^{x-1}) \cdot {2 \over 3}\; = \; 32 \)


c) \( 8^{3\,x+1} - 8^{3\,x} = 448\, \)


Övning 6

Ett belopp på 5 000 kr sätts in på ett bankkonto med fast årsränta. Inga uttag görs. Efter 10 år har beloppet fördubblats.


a) Ställ upp en potensekvation. Använd som obekant förändringsfaktorn för ett år och lös ekvationen. Vilken årsränta hade banken?


b) Hur mycket pengar finns på kontot efter 20 år (efter insättningen) om inga uttag görs.

MVG-övningar: 7-8

Övning 11

För vilket värde av \( z\, \) har följande ekvation lösningen \( x = 2\; \)\[ {15\,x^2 - 2\,x - 6 \over 6} = {x - 3\,z \over 2} - {z - 2\,x^2 \over 3} - {z \over x} \]


Övning 12

Lös ekvationen

\( v - {u \over u\,v + v\,x} = {v\,x^2 \over x^2 - u^2} + {u\,v^2 \over v\,x + u\,v} \)


där \( u\, \) och \( v\, \) är givna konstanter och \( x\, \) ekvationens obekant. Lösningen kommer därför att bli ett rationellt uttryck i \( u\, \) och \( v\, \).