2.3 Övningar till Gränsvärde
<-- Förra avsnitt | Teori | Övningar | Diagnosprov 1 kap 1 | Diagnosprov 2 kap 1 |
E-övningar: 1-5
Övning 1
Bestäm
a) \( \displaystyle {\color{White} x} \lim_{x \to 0}\, {(x - 8)} \)
b) \( \displaystyle {\color{White} x} \lim_{x \to 3}\, {(2\,x)} \)
c) \( \displaystyle {\color{White} x} \lim_{x \to 7}\,\, {5 \over x} \)
d) \( \displaystyle {\color{White} x} \lim_{x \to -3}\, {(4\,x - 10)} \)
e) \( \displaystyle {\color{White} x} \lim_{x \to 0}\, {(x^2 - 4\,x + 12)} \)
Övning 2
Beräkna
a) \( \displaystyle {\color{White} x} \lim_{x \to \infty}\, {-7 \over x} \)
b) \( \displaystyle {\color{White} x} \lim_{x \to \infty}\, {1 \over x^2} \)
c) \( \displaystyle {\color{White} x} \lim_{x \to \infty}\, {3\,x\,+\,4 \over x} \)
d) \( \displaystyle {\color{White} x} \lim_{x \to 0}\,\, {x^2 - 9\,x \over x} \)
e) \( \displaystyle {\color{White} x} \lim_{x \to 2}\,\, {x^2\,-\,16 \over x\,-\,4} \)
Övning 3
Betrakta funktionen \( \displaystyle {\color{White} x} y = f(x) = {12 \over x - 3} {\color{White} x} \).
a) Rita grafen till \( \displaystyle f(x) \).
b) Beräkna \( \displaystyle {\color{White} x} \lim_{x \to \infty}\,\, f(x) {\color{White} x} \).
c) Existerar ett gränsvärde för \( f(x) \) när \( x \to 3 \) ?
d) Ange \( \displaystyle {\color{White} x} \lim_{x \to 3^{+}}\,\, {12 \over x - 3} {\color{White} x} \) och \( \displaystyle {\color{White} x} \lim_{x \to 3^{-}}\,\, {12 \over x - 3} {\color{White} x} \).
\( \displaystyle {\color{White} x} \lim_{x \to 0}\,\, {x^2 + 1 \over x} \)
\( \displaystyle {\color{White} x} \lim_{x \to 2}\,\, {x^2\,-\,16 \over x\,-\,4} \)
Bestäm
- \[ \lim_{x \to 3}\, {x^2 - x - 6 \over x - 3} \]