2.6 Övningar till Derivatan av exponentialfunktioner
Teori | Övningar |
G-övningar: 1-4
Övning 1
Ställ upp derivatan av följande funktioner:
a) \( y = e\,^x + 8 \)
b) \( y = e\,^{2\,x} \)
c) \( y = 3\cdot e\,^x \)
d) \( y = 4\cdot e\,^{5\,x} \)
e) \( y = 16\cdot e\,^{-3\,x} \)
f) \( y = - x + e\,^{-0,5\,x} \)
g) \( y = {e\,^x + e\,^{-x} \over 2 } \)
Alternativt:
Övning 2
Derivera med hjälp av deriveringsreglerna:
a) \( y = {x \over 2} \)
b) \( y = 0,2\,x^5 + x \)
c) \( y = {x^2 \over 2} - {3 \over 4}\,x + 25 \)
d) \( y = {4\,x^2 - 8\,x \over 5} \)
e) \( y = 15 - {x + 3 \over 2} \)
f) \( y = (3\,x - 5)^2 \)
Alternativt:
- Svar 2a | Lösning 2a | Svar 2b | Lösning 2b | Svar 2c | Lösning 2c | Svar 2d | Lösning 2d | Svar 2e | Lösning 2e | Svar 2f | Lösning 2f
Övning 3
Ställ upp derivatan av följande funktioner med hjälp av deriveringsreglerna:
a) \( y = {2 \over x} \)
b) \( y = -{3 \over x} + \sqrt{5} \)
c) \( y = 6 - 2\,\sqrt{x} \)
d) \( y = 7\,x^4 - {25 \over x} \)
e) \( y = {1 \over x^2} \)
f) \( y = {1 \over \sqrt{x}} \)
Alternativt:
- Svar 3a | Lösning 3a | Svar 3b | Lösning 3b | Svar 3c | Lösning 3c | Svar 3d | Lösning 3d | Svar 3e | Lösning 3e | Svar 3f | Lösning 3f
Övning 4
Derivera med hjälp av deriveringsreglerna:
a) \( y = {x^2 + 3 \over x} \)
b) \( y = {x^2\,\sqrt{x}\over 5} \)
c) \( y = {2 \over 3}\,x\,\sqrt{x} - {1 \over x^2} \)
d) Beräkna \( f\,'(4)\, \) om \( f(x) = x^3 + {\sqrt{x} \over 2} \) med 3 decimaler.
e) Beräkna \( f\,'(1)\, \) om \( f(x) = {x^3 + x^2 + x - 1 \over x} \).
Alternativt:
- Svar 4a | Lösning 4a | Svar 4b | Lösning 4b | Svar 4c | Lösning 4c | Svar 4d | Lösning 4d | Svar 4e | Lösning 4e
Övning 5
I det introducerande avsnittet Vad är derivatan? sysslade vi med följande aktivitet:
Lisa tävlar i simhopp. Hennes hopp från 10-meterstorn följer en bana som beskrivs av funktionen
- \[ y = f(x) = - 9\,x^2 + 6\,x + 10\, \]
där \( y\, \) är Lisas höjd över vattnet (i meter) och \( x\, \) är tiden efter hon lämnat brädan (i sekunder).
Hon slår i vattnet efter 1,45 sekunder.
a) Ställ upp med deriveringsreglerna derivatan av \( f(x)\, \).
b) Beräkna med hjälp av derivatan från a) med vilken hastighet Lisa slår i vattnet?
Övning 6
Följande parabel är given:
- \[ y = x^2 + 5\,x - 8 \]
a) Vilken lutning har parabeln i punkten \( x = 1\, \)?
b) Ange ekvationen för tangenten till parabeln i denna punkt.
c) Rita grafen till både parabeln och tangenten i samma koordinatsystem.
VG-övningar: 7-8
Övning 7
Ställ upp ekvationen för tangenten till kurvan
- \[ y = x^2 + 5 x - 1\, \]
i punkten \( x = -1\, \) .
Alternativt:
Övning 8
I en bakteriekultur växer antalet bakterier y enligt följande modell
- \[ y = 2\,x^4 + 2\,500 \]
där x är tiden i timmar.
Efter hur många timmar kommer bakteriernas tillväxthastighet att vara \( 1\,000 \) bakterier per timme?
Alternativt:
MVG-övningar: 9-10
Övning 9
För vilka värden på \( a\, \) och \( b\, \) går kurvan
- \[ y = a\,x^2 + b\,x \]
genom punkten \( (1, -1)\, \) och har där lutningen \( 4\, \) ?
Alternativt:
Övning 10
Kurvan
- \[ y = 2\,x^2 - 3\,x - 4 \]
har en tangent som är parallell till den räta linjen \( y = x - 4\, \).
a) Rita kurvan.
b) Bestäm tangeringspunktens x- och y-koordinat.
c) Ställ upp ekvationen för tangenten till kurvan i tangeringspunkten.
d) Rita tangentens graf i samma koordinatsystem som kurvan.
Alternativt:
- Svar 10a | Svar 10b | Lösning 10b | Svar 10c | Lösning 10c | Svar 10d
Copyright © 2010-2011 Taifun Alishenas. All Rights Reserved.