Skillnad mellan versioner av "1.3 Övningar till Rationella uttryck"

Från Mathonline
Hoppa till: navigering, sök
m
m
Rad 77: Rad 77:
  
 
</div>{{#NAVCONTENT:Svar 4a|1.4 Svar 4a|Lösning 4a|1.4 Lösning 4a|Svar 4b|1.4 Svar 4b|Lösning 4b|1.4 Lösning 4b}}
 
</div>{{#NAVCONTENT:Svar 4a|1.4 Svar 4a|Lösning 4a|1.4 Lösning 4a|Svar 4b|1.4 Svar 4b|Lösning 4b|1.4 Lösning 4b}}
 +
Alternativt:
 +
:<small><small>[[1.4 Svar 4a|Svar 4a]] | [[1.4 Lösning 4a|Lösning 4a]] | [[1.4 Svar 4b|Svar 4b]] | [[1.4 Lösning 4b|Lösning 4b]]</small></small>
 +
  
 
== Övning 5 ==
 
== Övning 5 ==

Versionen från 27 mars 2011 kl. 10.34

       Teori          Övningar      


G-övningar: 1-6

Övning 1

För vilka värden på x är uttrycken nedan definierade och för vilka är de inte definierade?

a) \( x^2 + 1 \over 3\,x - 6 \)


b) \( x^2 - 5\,x + 3 \over (x+6) \cdot (x-1) \)


c) \( x^3 + 3\,x^2 -8\,x - 1 \over x^2 + 1 \)


d) \( 4\,x^4 -6\,x^2 + 1 \over x^2 - 16 \)

Alternativt:

Svar 1a | Lösning 1a | Svar 1b | Lösning 1b | Svar 1c | Lösning 1c | Svar 1d | Lösning 1d


Övning 2

Beräkna exakt

a) \( f(3)\, \) om \( f(x) = {x^2 - 4\,x + 3 \over 2\,x^2 + 3} \)


b) \( g(2)\, \) om \( g(t) = {3\,t^2 - 2\,t \over t\,(t+1)} \)


c) \( h(-1)\, \) om \( h(x) = {x^3 - x^2 - 1 \over x^3 + x^2 + x} \)


d) \( f(-1)\, \) om \( f(z) = {z^3 - z^2 - z - 1 \over z^3 + z^2 + z + 1} \)

Alternativt:

Svar 2a | Lösning 2a | Svar 2b | Lösning 2b | Svar 2c | Lösning 2c | Svar 2d | Lösning 2d


Övning 3

Förkorta följande uttryck så långt som möjligt, om det går:

a) \( 20\,x^3\,y^2 \over 4\,x^2\,y \)


b) \( x^2\,(x + y) \over x \)


c) \( x\,(x - y) \over y \)

Alternativt:

Svar 3a | Lösning 3a | Svar 3b | Lösning 3b | Svar 3c | Lösning 3c


Övning 4

Förenkla följande uttryck så långt som möjligt:

a) \( x - y \over y - x \)


b) \( 6\,(x-2)^2 \over 3\,x - 6 \)

Alternativt:

Svar 4a | Lösning 4a | Svar 4b | Lösning 4b


Övning 5

Förenkla följande uttryck så långt som möjligt:

a) \( {x \over 3} + {x \over 2} - {x \over 6} \)


b) \( {2 \over x} + {3 \over x^2} + {4 \over x^3} \)


c) \( {3 \over a-2} - {a+7 \over 6-3\,a} \)

Övning 6

Förenkla följande uttryck så långt som möjligt:

a) \( {3\,(y-3) \over 8\,y} \cdot {24\,y \over y-3} \)


b) \( {x+y \over x^2} \cdot {x\,y \over x+y} \)


c) \( \left({2\,a - 4 \over a^2}\right)\, \Bigg / \,\left({a^2 - 4 \over a^4}\right) \)

VG-övningar: 7-10

Övning 7

Förenkla följande uttryck:

a) \( x^2 - 25 \over 8\,x^2 - 40\,x \)


b) \( 3\,x^2 - 12\,x \over x^2 - 6\,x + 8 \)


c) \( 1 - x\,y \over (x\,y)^2 - x\,y \)


Övning 8

Förenkla följande uttryck så långt som möjligt:

a) \( {6\,x \over 4 - 9\,x^2} - {1 \over 2 -3\,x} \)


b) \( {1-x \over x+1} - {1+x \over 1-x} + {4\,x \over 1-x^2} \)


c) \( {2\,x^2 - x^3 \over 2\,x^2 - 8} - {x \over x+2} + {x+2 \over 2} \)

Övning 9

Förenkla följande uttryck så långt som möjligt:

a) \( \left({1 \over 2\,x - 1} + {1 \over 2\,x + 1}\right) \cdot {2\,x + 1 \over 2\,x} \)


b) \( \left({a^2 - 6\,a + 9 \over b^6}\right)\, \Bigg / \,\left({a - 3 \over b^5}\right) \)


c) \( \left(1 - {x^2 \over y^2}\right)\, \Bigg / \,\left(1 - {x \over y}\right) \)


Övning 10

En rationell funktion är given\[ f(x) = {x+2 \over x^2 - x - 6} \]

a) Faktorisera nämnaren och skriv \( f(x)\, \) med faktoriserad nämnare.

b) Ange funktionens diskontinuiteter, dvs de x för vilka \( f(x)\, \) inte är definierad.

c) Vilken av funktionens diskontinuiteter är hävbar? Ange en funktion \( g(x)\, \) som inte längre har \(\, f(x)\):s hävbara diskontinuitet, men är annars identisk med \( f(x)\, \).

d) Rita graferna till \( f(x)\, \) och \( g(x)\, \). Kan man av grafernas utseende dra slutsatsen att funktionerna är identiska?


MVG-övningar: 11-12

Övning 11

För vilket värde av \( z\, \) har följande ekvation lösningen \( x = 2\; \)\[ {15\,x^2 - 2\,x - 6 \over 6} = {x - 3\,z \over 2} - {z - 2\,x^2 \over 3} - {z \over x} \]


Övning 12

Lös ekvationen

\( v - {u \over u\,v + v\,x} = {v\,x^2 \over x^2 - u^2} + {u\,v^2 \over v\,x + u\,v} \)


där \( u\, \) och \( v\, \) är givna konstanter och \( x\, \) ekvationens obekant. Lösningen kommer därför att bli ett rationellt uttryck i \( u\, \) och \( v\, \).