Skillnad mellan versioner av "1.3 Övningar till Rationella uttryck"

Från Mathonline
Hoppa till: navigering, sök
m (Övning 10)
m (Övning 10)
Rad 180: Rad 180:
 
b) Ange de värden på x för vilka <math> f(x)\, </math> inte är definierad (funktionens diskontinuiteter).
 
b) Ange de värden på x för vilka <math> f(x)\, </math> inte är definierad (funktionens diskontinuiteter).
  
c) Vilken av funktionens diskontinuiteter är hävbar? Ange en funktion <math> g(x)\, </math> som inte längre har <math>\, f(x)</math>:s hävbara diskontinuitet, men är annars identisk med <math> f(x)\, </math>.
+
c) Ange en funktion <math> g(x)\, </math> som inte längre har <math>\, f(x)</math>:s hävbara diskontinuitet, men är annars identisk med <math> f(x)\, </math>. Avgör först vilken av <math>\, f(x)</math>:s diskontinuiteter är hävbar.  
  
 
d) Rita graferna till <math> f(x)\, </math> och <math> g(x)\, </math>. Kan man av grafernas utseende dra slutsatsen att funktionerna är identiska?
 
d) Rita graferna till <math> f(x)\, </math> och <math> g(x)\, </math>. Kan man av grafernas utseende dra slutsatsen att funktionerna är identiska?

Versionen från 21 september 2012 kl. 10.43

       Teori          Övningar      


G-övningar: 1-6

Övning 1

För vilka värden på x är uttrycken nedan definierade och för vilka är de inte definierade?

a) \( x^2 + 1 \over 3\,x - 6 \)


b) \( x^2 - 5\,x + 3 \over (x+6) \cdot (x-1) \)


c) \( x^3 + 3\,x^2 -8\,x - 1 \over x^2 + 1 \)


d) \( 4\,x^4 -6\,x^2 + 1 \over x^2 - 16 \)

Alternativt:

Svar 1a | Lösning 1a | Svar 1b | Lösning 1b | Svar 1c | Lösning 1c | Svar 1d | Lösning 1d


Övning 2

Beräkna exakt

a) \( f(3)\, \) om \( f(x) = {x^2 - 4\,x + 3 \over 2\,x^2 + 3} \)


b) \( g(2)\, \) om \( g(t) = {3\,t^2 - 2\,t \over t\,(t+1)} \)


c) \( h(-1)\, \) om \( h(x) = {x^3 - x^2 - 1 \over x^3 + x^2 + x} \)


d) \( f(-1)\, \) om \( f(z) = {z^3 - z^2 - z - 1 \over z^3 + z^2 + z + 1} \)

Alternativt:

Svar 2a | Lösning 2a | Svar 2b | Lösning 2b | Svar 2c | Lösning 2c | Svar 2d | Lösning 2d


Övning 3

Förkorta följande uttryck så långt som möjligt, om det går:

a) \( 20\,x^3\,y^2 \over 4\,x^2\,y \)


b) \( x^2\,(x + y) \over x \)


c) \( x\,(x - y) \over y \)

Alternativt:

Svar 3a | Lösning 3a | Svar 3b | Lösning 3b | Svar 3c | Lösning 3c


Övning 4

Förenkla följande uttryck så långt som möjligt:

a) \( x - y \over y - x \)


b) \( 6\,(x-2)^2 \over 3\,x - 6 \)

Alternativt:

Svar 4a | Lösning 4a | Svar 4b | Lösning 4b


Övning 5

Förenkla följande uttryck så långt som möjligt:

a) \( {x \over 3} + {x \over 2} - {x \over 6} \)


b) \( {2 \over x} + {3 \over x^2} + {4 \over x^3} \)


c) \( {3 \over a-2} - {a+7 \over 6-3\,a} \)

Alternativt:

Svar 5a | Lösning 5a | Svar 5b | Lösning 5b | Svar 5c | Lösning 5c


Övning 6

Förenkla följande uttryck så långt som möjligt:

a) \( {3\,(y-3) \over 8\,y} \cdot {24\,y \over y-3} \)


b) \( {x+y \over x^2} \cdot {x\,y \over x+y} \)


c) \( \left({2\,a - 4 \over a^2}\right)\, \Bigg / \,\left({a^2 - 4 \over a^4}\right) \)

Alternativt:

Svar 6a | Lösning 6a | Svar 6b | Lösning 6b | Svar 6c | Lösning 6c


VG-övningar: 7-10

Övning 7

Förenkla följande uttryck:

a) \( x^2 - 25 \over 8\,x^2 - 40\,x \)


b) \( 3\,x^2 - 12\,x \over x^2 - 6\,x + 8 \)


c) \( 1 - x\,y \over (x\,y)^2 - x\,y \)


Alternativt:

Svar 7a | Lösning 7a | Svar 7b | Lösning 7b | Svar 7c | Lösning 7c


Övning 8

Förenkla uttrycken i a) och b) så långt som möjligt:

a) \( {6\,x \over 4 - 9\,x^2} - {1 \over 2 -3\,x} \)


b) \( {1-x \over x+1} - {1+x \over 1-x} + {4\,x \over 1-x^2} \)


c) För vilket värde på \( z\, \) har följande ekvation lösningen \( x = 2\; \)\[ {15\,x^2 - 2\,x - 6 \over 6} = {x - 3\,z \over 2} - {z - 2\,x^2 \over 3} - {z \over x} \]

Alternativt:

Svar 8a | Lösning 8a | Svar 8b | Lösning 8b | Svar 8c | Lösning 8c

Övning 9

Förenkla följande uttryck så långt som möjligt:

a) \( \left({1 \over 2\,x - 1} + {1 \over 2\,x + 1}\right) \cdot {2\,x + 1 \over 2\,x} \)


b) \( \left({a^2 - 6\,a + 9 \over b^6}\right)\, \Bigg / \,\left({a - 3 \over b^5}\right) \)


c) \( \left(1 - {x^2 \over y^2}\right)\, \Bigg / \,\left(1 - {x \over y}\right) \)

Alternativt:

Svar 9a | Lösning 9a | Svar 9b | Lösning 9b | Svar 9c | Lösning 9c

Övning 10

En rationell funktion är given\[ f(x) = {x+2 \over x^2 - x - 6} \]

a) Faktorisera nämnaren och skriv \( f(x)\, \) med faktoriserad nämnare.

b) Ange de värden på x för vilka \( f(x)\, \) inte är definierad (funktionens diskontinuiteter).

c) Ange en funktion \( g(x)\, \) som inte längre har \(\, f(x)\):s hävbara diskontinuitet, men är annars identisk med \( f(x)\, \). Avgör först vilken av \(\, f(x)\):s diskontinuiteter är hävbar.

d) Rita graferna till \( f(x)\, \) och \( g(x)\, \). Kan man av grafernas utseende dra slutsatsen att funktionerna är identiska?

Alternativt:

Svar 10a | Lösning 10a | Svar 10b | Lösning 10b | Svar 10c | Lösning 10c | Svar 10d | Lösning 10d

MVG-övningar: 11-12

Övning 11

Förenkla så långt som möjligt\[ {2\,x^2 - x^3 \over 2\,x^2 - 8} - {x \over x+2} + {x+2 \over 2} \]

Alternativt:

Svar 11 | Lösning 11


Övning 12

Lös ekvationen

\( v - {u \over u\,v + v\,x} = {v\,x^2 \over x^2 - u^2} + {u\,v^2 \over v\,x + u\,v} \)


där \( u\, \) och \( v\, \) är givna konstanter och \( x\, \) ekvationens obekant. Lösningen kommer därför att bli ett rationellt uttryck i \( u\, \) och \( v\, \).

Alternativt:

Svar 12 | Lösning 12


Facit

1a

Uttrycket är definierat för alla x utom för \( x = 2 \).

1b

Uttrycket är definierat för alla x utom för \( x = -6 \) och för \( x = 1 \).

1c

Uttrycket är definierat för alla (reella) x.

1d

Uttrycket är definierat för alla x utom för \( x = 4 \) och \( x = -4 \).

2a

\( f(3)\, = 0 \)

2b

\( g(2) = {4 \over 3} \)

2c

\( h(-1)\, = 3 \)

2d

\( f(-1)\, \) är inte definierat.

3a

\( 5\;x\,y \)

3b

\( x\;(x+y) \)

3c

\( x\,(x - y) \over y \)

4a

\( - 1\, \)

4b

\( 2\;(x-2) \)

5a

\( {2 \over 3}\, x \) eller \( {2\, x \over 3} \)

5b

\( {2\,x^2 + 3\,x + 4 \over x^3} \)

5c

\( a+16 \over 3\,(a-2) \)

6a

\( 9\, \)

6b

\( y \over x\, \)

6c

\( 2\,a^2 \over a+2 \)

7a

\( x + 5 \over 8\,x \)

7b

\( {3\,x \over x -2} \)

7c

\( - {1 \over x\,y} \)

8a

\( -{1 \over 3\,x + 2} \)

8b

\( 0\, \)

8c

9a

\( 2 \over 2\,x -1 \)

9b

\( {a-3 \over b} \)

9c

\( x + y \over y \)

10a

\( x+2 \over (x+2) \cdot (x-3) \)

10b

\( x = -2\, \)

\( x = 3\, \)

10c

Diskontinuiteten \( x = -2\, \) är hävbar.

\( g(x)\, =\, {1 \over x-3}\)

10d

Nej.

11

\( 1\, \)

12

\( x = {u \over 1 + v^2} \)


Copyright © 2010-2012 Taifun Alishenas. All Rights Reserved.