Skillnad mellan versioner av "1.3 Övningar till Rationella uttryck"

Från Mathonline
Hoppa till: navigering, sök
m (Övning 11)
m (Övning 12)
Rad 170: Rad 170:
  
 
== Övning 12 ==
 
== Övning 12 ==
 
 
<div class="ovning">
 
<div class="ovning">
Visa att 2:a gradspolynomet <math> P(x) = 8\,x^2 + 7\,x - 1 </math> kan skrivas som
+
Lös ekvationen
  
:<math> (a\,x + b) \cdot (c\,x + d) </math>
 
  
vilket innebär en faktorisering av polynomet <math> P(x)\, </math>. Bestäm a, b, c och d genom att:
+
<math> (a\,x + b) \cdot (c\,x + d) </math>
  
a) Hitta först polynomet <math> P(x)\, </math>:s rötter <math> x_1\, </math> och <math> x_2\, </math> exakt, dvs bibehåll bråkformen.
 
  
b) Sätt sedan <math> P(x) = k \cdot (x - x_1) \cdot (x - x_2)  </math> och bestäm k genom jämförelse av koefficienter. Ange a, b, c och d.
+
där
  
</div>{{#NAVCONTENT:Svar 12a|1.4 Svar 12a|Lösning 12a|1.4 Lösning 12a|Svar 12b|1.4 Svar 12b|Lösning 12b|1.4 Lösning 12b}}
+
</div>{{#NAVCONTENT:Svar 12|1.4 Svar 12|Lösning 12|1.4 Lösning 12}}

Versionen från 25 februari 2011 kl. 05.34

       Teori          Övningar      


G-övningar: 1-6

Övning 1

För vilka värden på x är uttrycken nedan definierade och för vilka är de inte definierade?

a) \( x^2 + 1 \over 3\,x - 6 \)


b) \( x^2 - 5\,x + 3 \over (x+6) \cdot (x-1) \)


c) \( x^3 + 3\,x^2 -8\,x - 1 \over x^2 + 1 \)


d) \( 4\,x^4 -6\,x^2 + 1 \over x^2 - 16 \)

Övning 2

Beräkna exakt

a) \( f(3)\, \) om \( f(x) = {x^2 - 4\,x + 3 \over 2\,x^2 + 3} \)


b) \( g(2)\, \) om \( g(t) = {3\,t^2 - 2\,t \over t\,(t+1)} \)


c) \( h(-1)\, \) om \( h(x) = {x^3 - x^2 - 1 \over x^3 + x^2 + x} \)


d) \( f(-1)\, \) om \( f(z) = {z^3 - z^2 - z - 1 \over z^3 + z^2 + z + 1} \)

Övning 3

Förkorta följande uttryck så långt som möjligt, om det går:

a) \( 20\,x^3\,y^2 \over 4\,x^2\,y \)


b) \( x^2\,(x + y) \over x \)


c) \( x\,(x - y) \over y \)

Övning 4

Förenkla följande uttryck så långt som möjligt:

a) \( x - y \over y - x \)


b) \( 6\,(x-2)^2 \over 3\,x - 6 \)

Övning 5

Förenkla följande uttryck så långt som möjligt:

a) \( {x \over 3} + {x \over 2} - {x \over 6} \)


b) \( {2 \over x} + {3 \over x^2} + {4 \over x^3} \)


c) \( {3 \over a-2} - {a+7 \over 6-3\,a} \)

Övning 6

Förenkla följande uttryck så långt som möjligt:

a) \( {3\,(y-3) \over 8\,y} \cdot {24\,y \over y-3} \)


b) \( {x+y \over x^2} \cdot {x\,y \over x+y} \)


c) \( \left({2\,a - 4 \over a^2}\right)\, \Bigg / \,\left({a^2 - 4 \over a^4}\right) \)

VG-övningar: 7-10

Övning 7

Förenkla följande uttryck:

a) \( x^2 - 25 \over 8\,x^2 - 40\,x \)


b) \( 3\,x^2 - 12\,x \over x^2 - 6\,x + 8 \)


c) \( 1 - x\,y \over (x\,y)^2 - x\,y \)


Övning 8

Förenkla följande uttryck så långt som möjligt:

a) \( {6\,x \over 4 - 9\,x^2} - {1 \over 2 -3\,x} \)


b) \( {1-x \over x+1} - {1+x \over 1-x} + {4\,x \over 1-x^2} \)


c) \( {2\,x^2 - x^3 \over 2\,x^2 - 8} - {x \over x+2} + {x+2 \over 2} \)

Övning 9

Förenkla följande uttryck så långt som möjligt:

a) \( \left({1 \over 2\,x - 1} + {1 \over 2\,x + 1}\right) \cdot {2\,x + 1 \over 2\,x} \)


b) \( \left({a^2 - 6\,a + 9 \over b^6}\right)\, \Bigg / \,\left({a - 3 \over b^5}\right) \)


c) \( \left(1 - {x^2 \over y^2}\right)\, \Bigg / \,\left(1 - {x \over y}\right) \)

Övning 10

En rationell funktion är given\[ f(x) = {x+2 \over x^2 - x - 6} \]

a) Faktorisera nämnaren och skriv \( f(x)\, \) med faktoriserad nämnare.

b) Ange funktionens diskontinuiteter, dvs de x för vilka \( f(x)\, \) inte är definierad.

c) Vilken av funktionens diskontinuiteter är hävbar? Ange en funktion \( g(x)\, \) som upphäver \( f(x)\, \):s ena diskontinuitet, men är annars identisk med \( f(x)\, \).

d) Rita graferna till \( f(x)\, \) och \( g(x)\, \). Kan man av grafernas utseende dra slutsatsen att funktionerna är identiska?

MVG-övningar: 11-12

Övning 11

För vilket värde av \( z\, \) har följande ekvation lösningen \( x = 2\; \)\[ {15\,x^2 - 2\,x - 6 \over 6} = {x - 3\,z \over 2} - {z - 2\,x^2 \over 3} - {z \over x} \]

Övning 12

Lös ekvationen


\( (a\,x + b) \cdot (c\,x + d) \)


där