Skillnad mellan versioner av "1.5 Övningar till Potenslagarna"
Taifun (Diskussion | bidrag) m (→Övning 2) |
Taifun (Diskussion | bidrag) m (→Övning 3) |
||
Rad 49: | Rad 49: | ||
== Övning 3 == | == Övning 3 == | ||
<div class="ovning"> | <div class="ovning"> | ||
− | + | Förenkla uttrycken nedan till en enda potens: | |
− | a) <math> | + | a) <math> 8^2 \cdot 4^3 </math> |
− | b) <math> | + | b) <math> 3^{-2} \cdot 9^2 \over 27 </math> |
− | c) <math> x\ | + | c) <math> x^{-5} \cdot x^9 \over (x^{-9})^{1/3} </math> |
− | </div>{{#NAVCONTENT:Svar 3a|1. | + | </div>{{#NAVCONTENT:Svar 3a|1.5 Svar 3a|Lösning 3a|1.5 Lösning 3a|Svar 3b|1.5 Svar 3b|Lösning 3b|1.5 Lösning 3b|Svar 3c|1.5 Svar 3c|Lösning 3c|1.5 Lösning 3c}} |
== Övning 4 == | == Övning 4 == |
Versionen från 8 mars 2011 kl. 23.05
Teori | Övningar |
G-övningar: 1-6
Övning 1
Förenkla nedanstående uttryck så långt som möjligt bl.a. med hjälp av potenslagarna
a) \( x^4 \cdot x^{-2} / x \)
b) \( {2\,x^{-5} \over 3\,x^{-8}} \cdot (2\,x)^{-1} \)
c) \( (25\,x^2)^{1/2} \)
d) \( (x^{-2})^6 \cdot \sqrt{y} \over y^{0,5} \cdot (x^{-4})^3\, \)
Övning 2
Svara med SANT eller FALSKT på följande frågor och motivera ditt svar:
a) Gäller \( (a+b)^2 = a^2 + b^2\, \)? T.ex. stämmer det att \( (2+3)^2 = 2^2 + 3^2\, \)?
b) Gäller \( (a-b)^2 = a^2 - b^2\, \)? T.ex. stämmer det att \( (5-4)^2 = 5^2 + 4^2\, \)?
c) Gäller \( \sqrt{a^2+b^2} = a + b \)? T.ex. stämmer det att \( \sqrt{25+16} = 5 + 4 \)?
d) Gäller \( \sqrt{a^2 \cdot b^2} = a \cdot b \)? T.ex. stämmer det att \( \sqrt{9 \cdot 4} = 3 \cdot 2 \)?
e) Gäller \( x^3 \cdot y^2 = (x \cdot y)^5 \)? T.ex. stämmer det att \( 2^3 \cdot 5^2 = (2 \cdot 5)^5 \)?
Övning 3
Förenkla uttrycken nedan till en enda potens:
a) \( 8^2 \cdot 4^3 \)
b) \( 3^{-2} \cdot 9^2 \over 27 \)
c) \( x^{-5} \cdot x^9 \over (x^{-9})^{1/3} \)
Övning 4
Förenkla följande uttryck så långt som möjligt:
a) \( (3^x + 3^{-x})/4\, \)
b) \( 6\,(x-2)^2 \over 3\,x - 6 \)
Övning 5
Förenkla följande uttryck så långt som möjligt:
a) \( {x \over 3} + {x \over 2} - {x \over 6} \)
b) \( {2 \over x} + {3 \over x^2} + {4 \over x^3} \)
c) \( {3 \over a-2} - {a+7 \over 6-3\,a} \)
Övning 6
Förenkla följande uttryck så långt som möjligt:
a) \( {3\,(y-3) \over 8\,y} \cdot {24\,y \over y-3} \)
b) \( {x+y \over x^2} \cdot {x\,y \over x+y} \)
c) \( \left({2\,a - 4 \over a^2}\right)\, \Bigg / \,\left({a^2 - 4 \over a^4}\right) \)
VG-övningar: 7-10
Övning 7
Förenkla följande uttryck:
a) \( x^2 - 25 \over 8\,x^2 - 40\,x \)
b) \( 3\,x^2 - 12\,x \over x^2 - 6\,x + 8 \)
c) \( 1 - x\,y \over (x\,y)^2 - x\,y \)
Övning 8
Förenkla följande uttryck så långt som möjligt:
a) \( {6\,x \over 4 - 9\,x^2} - {1 \over 2 -3\,x} \)
b) \( {1-x \over x+1} - {1+x \over 1-x} + {4\,x \over 1-x^2} \)
c) \( {2\,x^2 - x^3 \over 2\,x^2 - 8} - {x \over x+2} + {x+2 \over 2} \)
Övning 9
Förenkla följande uttryck så långt som möjligt:
a) \( \left({1 \over 2\,x - 1} + {1 \over 2\,x + 1}\right) \cdot {2\,x + 1 \over 2\,x} \)
b) \( \left({a^2 - 6\,a + 9 \over b^6}\right)\, \Bigg / \,\left({a - 3 \over b^5}\right) \)
c) \( \left(1 - {x^2 \over y^2}\right)\, \Bigg / \,\left(1 - {x \over y}\right) \)
Övning 10
En rationell funktion är given\[ f(x) = {x+2 \over x^2 - x - 6} \]
a) Faktorisera nämnaren och skriv \( f(x)\, \) med faktoriserad nämnare.
b) Ange funktionens diskontinuiteter, dvs de x för vilka \( f(x)\, \) inte är definierad.
c) Vilken av funktionens diskontinuiteter är hävbar? Ange en funktion \( g(x)\, \) som inte längre har \(\, f(x)\):s hävbara diskontinuitet, men är annars identisk med \( f(x)\, \).
d) Rita graferna till \( f(x)\, \) och \( g(x)\, \). Kan man av grafernas utseende dra slutsatsen att funktionerna är identiska?
MVG-övningar: 11-12
Övning 11
För vilket värde av \( z\, \) har följande ekvation lösningen \( x = 2\; \)\[ {15\,x^2 - 2\,x - 6 \over 6} = {x - 3\,z \over 2} - {z - 2\,x^2 \over 3} - {z \over x} \]
Övning 12
Lös ekvationen
\( v - {u \over u\,v + v\,x} = {v\,x^2 \over x^2 - u^2} + {u\,v^2 \over v\,x + u\,v} \)
där \( u\, \) och \( v\, \) är givna konstanter och \( x\, \) ekvationens obekant. Lösningen kommer därför att bli ett rationellt uttryck i \( u\, \) och \( v\, \).