2.3 Övningar till Gränsvärde

Från Mathonline
Version från den 30 augusti 2014 kl. 21.01 av Taifun (Diskussion | bidrag)

Hoppa till: navigering, sök
       <-- Förra avsnitt          Teori          Övningar          Diagnosprov 1 kap 1          Diagnosprov 2 kap 1      


E-övningar: 1-4


Övning 1

Bestäm

a) \( \displaystyle {\color{White} x} \lim_{x \to 0}\, {(x - 8)} \)


b) \( \displaystyle {\color{White} x} \lim_{x \to 3}\, {(2\,x)} \)


c) \( \displaystyle {\color{White} x} \lim_{x \to 7}\,\, {5 \over x} \)


d) \( \displaystyle {\color{White} x} \lim_{x \to -3}\, {(4\,x - 10)} \)


e) \( \displaystyle {\color{White} x} \lim_{x \to 0}\, {(x^2 - 4\,x + 12)} \)

Övning 2

Beräkna

a) \( \displaystyle {\color{White} x} \lim_{x \to \infty}\, {-7 \over x} \)


b) \( \displaystyle {\color{White} x} \lim_{x \to \infty}\, {1 \over x^2} \)


c) \( \displaystyle {\color{White} x} \lim_{x \to \infty}\, {3\,x\,+\,4 \over x} \)


d) \( \displaystyle {\color{White} x} \lim_{x \to 0}\,\, {x^2 - 9\,x \over x} \)


e) \( \displaystyle {\color{White} x} \lim_{x \to 2}\,\, {2\,(x^2 + 1) \over x} \)

Övning 3

Betrakta funktionen \( \displaystyle {\color{White} x} y = f(x) = {12 \over x - 3} {\color{White} x} \).

a)    Rita grafen till \( \displaystyle f(x) \).

b)    Existerar gränsvärdet \( \displaystyle {\color{White} x} \lim_{x \to \infty}\,\, f(x) {\color{White} x} \)?    Om ja beräkna det.

c)    Existerar ett gränsvärde för \( f(x) \) när \( x \to 3 \) ?

d)    Ange \( \displaystyle {\color{White} x} \lim_{x \to 3^{+}}\, f(x) {\color{White} x} \) och \( \displaystyle {\color{White} x} \lim_{x \to 3^{-}}\,\, f(x) {\color{White} x} \).

Övning 4

Betrakta funktionen \( \displaystyle {\color{White} x} y = f(x) = {x^2\,-\,16 \over x\,-\,4} {\color{White} x} \).

a)    Rita grafen till \( \displaystyle f(x) \).

b)    Existerar gränsvärdet \( \displaystyle {\color{White} x} \lim_{x \to \infty}\,\, f(x) {\color{White} x} \)?    Om ja beräkna det.

c)    Beräkna \( \displaystyle {\color{White} x} \lim_{x \to 4^{+}}\, f(x) {\color{White} x} \) och \( \displaystyle {\color{White} x} \lim_{x \to 4^{-}}\, f(x) {\color{White} x} \).

d)    Existerar gränsvärdet \( \displaystyle {\color{White} x} \lim_{x \to 4}\,\, f(x) {\color{White} x} \)?    Om ja beräkna det.


C-övningar: 5-7


Övning 5


a)    Beräkna \( \displaystyle {\color{White} x} \lim_{x \to 2}\,\, {x^2\,-\,5\,x\,+\,6 \over x\,-\,2} \)


b)    Bestäm \( \displaystyle {\color{White} x} \lim_{x \to \infty}\,\, {x^2\,-\,2\,x\,+\,3 \over 2\,x^2\,+\,5\,x\,-\,3} \)


c)    Sätt in i följande gränsvärde \( \displaystyle x = {1 \over h} \) och låt \( h \to 0 \):

\[ \displaystyle {\color{White} x} \lim_{x \to \infty}\,\, {x\,+\,1 \over x^2\,+\,1} \]

Övning 6

Bestäm de följande gränsvärdena:


a) \( \displaystyle {\color{White} x} \lim_{x \to \infty}\,\, {5\,x\,+\,3 \over 2\,x\,-\,7} \)


b) \( \displaystyle {\color{White} x} \lim_{x \to 3}\,\, {x^2 - 7\,x + 12 \over x - 3} \)


c) \( \displaystyle {\color{White} x} \lim_{x \to \infty}\,\, {2\,x^2\,+\,4\,x\,-\,3 \over 5\,x^2\,-\,6\,x\,+\,1} \)