1.3 Övningar till Rationella uttryck
Teori | Övningar |
G-övningar: 1-6
Övning 1
För vilka värden på x är uttrycken nedan definierade och för vilka är de inte definierade?
a) \( x^2 + 1 \over 3\,x - 6 \)
b) \( x^2 - 5\,x + 3 \over (x+6) \cdot (x-1) \)
c) \( x^3 + 3\,x^2 -8\,x - 1 \over x^2 + 1 \)
d) \( 4\,x^4 -6\,x^2 + 1 \over x^2 - 16 \)
Alternativt:
- Svar 1a | Lösning 1a | Svar 1b | Lösning 1b | Svar 1c | Lösning 1c | Svar 1d | Lösning 1d
Övning 2
Beräkna exakt
a) \( f(3)\, \) om \( f(x) = {x^2 - 4\,x + 3 \over 2\,x^2 + 3} \)
b) \( g(2)\, \) om \( g(t) = {3\,t^2 - 2\,t \over t\,(t+1)} \)
c) \( h(-1)\, \) om \( h(x) = {x^3 - x^2 - 1 \over x^3 + x^2 + x} \)
d) \( f(-1)\, \) om \( f(z) = {z^3 - z^2 - z - 1 \over z^3 + z^2 + z + 1} \)
Alternativt:
- Svar 2a | Lösning 2a | Svar 2b | Lösning 2b | Svar 2c | Lösning 2c | Svar 2d | Lösning 2d
Övning 3
Förkorta följande uttryck så långt som möjligt, om det går:
a) \( 20\,x^3\,y^2 \over 4\,x^2\,y \)
b) \( x^2\,(x + y) \over x \)
c) \( x\,(x - y) \over y \)
Alternativt:
- Svar 3a | Lösning 3a | Svar 3b | Lösning 3b | Svar 3c | Lösning 3c
Övning 4
Förenkla följande uttryck så långt som möjligt:
a) \( x - y \over y - x \)
b) \( 6\,(x-2)^2 \over 3\,x - 6 \)
Alternativt:
- Svar 4a | Lösning 4a | Svar 4b | Lösning 4b
Övning 5
Förenkla följande uttryck så långt som möjligt:
a) \( {x \over 3} + {x \over 2} - {x \over 6} \)
b) \( {2 \over x} + {3 \over x^2} + {4 \over x^3} \)
c) \( {3 \over a-2} - {a+7 \over 6-3\,a} \)
Alternativt:
- Svar 5a | Lösning 5a | Svar 5b | Lösning 5b | Svar 5c | Lösning 5c
Övning 6
Förenkla följande uttryck så långt som möjligt:
a) \( {3\,(y-3) \over 8\,y} \cdot {24\,y \over y-3} \)
b) \( {x+y \over x^2} \cdot {x\,y \over x+y} \)
c) \( \left({2\,a - 4 \over a^2}\right)\, \Bigg / \,\left({a^2 - 4 \over a^4}\right) \)
Alternativt:
- Svar 6a | Lösning 6a | Svar 6b | Lösning 6b | Svar 6c | Lösning 6c
VG-övningar: 7-10
Övning 7
Förenkla följande uttryck:
a) \( x^2 - 25 \over 8\,x^2 - 40\,x \)
b) \( 3\,x^2 - 12\,x \over x^2 - 6\,x + 8 \)
c) \( 1 - x\,y \over (x\,y)^2 - x\,y \)
Alternativt:
- Svar 7a | Lösning 7a | Svar 7b | Lösning 7b | Svar 7c | Lösning 7c
Övning 8
Förenkla uttrycken i a) och b) så långt som möjligt:
a) \( {6\,x \over 4 - 9\,x^2} - {1 \over 2 -3\,x} \)
b) \( {1-x \over x+1} - {1+x \over 1-x} + {4\,x \over 1-x^2} \)
c) För vilket värde på \( z\, \) har följande ekvation lösningen \( x = 2\; \)\[ {15\,x^2 - 2\,x - 6 \over 6} = {x - 3\,z \over 2} - {z - 2\,x^2 \over 3} - {z \over x} \]
Alternativt:
- Svar 8a | Lösning 8a | Svar 8b | Lösning 8b | Svar 8c | Lösning 8c
Övning 9
Förenkla följande uttryck så långt som möjligt:
a) \( \left({1 \over 2\,x - 1} + {1 \over 2\,x + 1}\right) \cdot {2\,x + 1 \over 2\,x} \)
b) \( \left({a^2 - 6\,a + 9 \over b^6}\right)\, \Bigg / \,\left({a - 3 \over b^5}\right) \)
c) \( \left(1 - {x^2 \over y^2}\right)\, \Bigg / \,\left(1 - {x \over y}\right) \)
Alternativt:
- Svar 9a | Lösning 9a | Svar 9b | Lösning 9b | Svar 9c | Lösning 9c
Övning 10
En rationell funktion är given\[ f(x) = {x+2 \over x^2 - x - 6} \]
a) Faktorisera nämnaren och skriv \( f(x)\, \) med faktoriserad nämnare.
b) Ange de värden på x för vilka \( f(x)\, \) inte är definierad (funktionens diskontinuiteter).
c) Ange en funktion \( g(x)\, \) som inte längre har \(\, f(x)\):s hävbara diskontinuitet, men är annars identisk med \( f(x)\, \). Avgör först vilken av \(\, f(x)\):s diskontinuiteter är hävbar.
d) Rita graferna till \( f(x)\, \) och \( g(x)\, \). Kan man av grafernas utseende dra slutsatsen att funktionerna är identiska?
Alternativt:
- Svar 10a | Lösning 10a | Svar 10b | Lösning 10b | Svar 10c | Lösning 10c | Svar 10d | Lösning 10d
MVG-övningar: 11-12
Övning 11
Förenkla så långt som möjligt\[ {2\,x^2 - x^3 \over 2\,x^2 - 8} - {x \over x+2} + {x+2 \over 2} \]
Alternativt:
Övning 12
Lös ekvationen
\( v - {u \over u\,v + v\,x} = {v\,x^2 \over x^2 - u^2} + {u\,v^2 \over v\,x + u\,v} \)
där \( u\, \) och \( v\, \) är givna konstanter och \( x\, \) ekvationens obekant. Lösningen kommer därför att bli ett rationellt uttryck i \( u\, \) och \( v\, \).
Alternativt:
Facit
1a
Uttrycket är definierat för alla x utom för \( x = 2 \).
1b
Uttrycket är definierat för alla x utom för \( x = -6 \) och för \( x = 1 \).
1c
Uttrycket är definierat för alla (reella) x.
1d
Uttrycket är definierat för alla x utom för \( x = 4 \) och \( x = -4 \).
2a
\( f(3)\, = 0 \)
2b
\( g(2) = {4 \over 3} \)
2c
\( h(-1)\, = 3 \)
2d
\( f(-1)\, \) är inte definierat.
3a
\( 5\;x\,y \)
3b
\( x\;(x+y) \)
3c
\( x\,(x - y) \over y \)
4a
\( - 1\, \)
4b
\( 2\;(x-2) \)
5a
\( {2 \over 3}\, x \) eller \( {2\, x \over 3} \)
5b
\( {2\,x^2 + 3\,x + 4 \over x^3} \)
5c
\( a+16 \over 3\,(a-2) \)
6a
\( 9\, \)
6b
\( y \over x\, \)
6c
\( 2\,a^2 \over a+2 \)
7a
\( x + 5 \over 8\,x \)
7b
\( {3\,x \over x -2} \)
7c
\( - {1 \over x\,y} \)
8a
\( -{1 \over 3\,x + 2} \)
8b
\( 0\, \)
8c
9a
\( 2 \over 2\,x -1 \)
9b
\( {a-3 \over b} \)
9c
\( x + y \over y \)
10a
\( x+2 \over (x+2) \cdot (x-3) \)
10b
\( x = -2\, \)
\( x = 3\, \)
10c
Diskontinuiteten \( x = -2\, \) är hävbar.
\( g(x)\, =\, {1 \over x-3}\)
10d
Nej.
11
\( 1\, \)
12
\( x = {u \over 1 + v^2} \)
Copyright © 2010-2012 Taifun Alishenas. All Rights Reserved.